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Summary. In this paper, we present a model of ‘collective innovation’ built upon
the network formation formalism introduced by Jackson and Wolinski (1996) and
Jackson and Watts (2002). Agents localized on a circle benefit from knowledge flows
from some others with whom they are directly or indirectly connected. They also
support costs for direct connections which are linearly increasing with geographical
distance separating them. The dynamic process of network formation departs from
the specialized literature in that it exhibits preferential meeting for close agents.
The results concern the set of stochastically stable networks selected in the long run.
Their architectures are compared to the ones obtained in the simple ‘connections
model’. Our main result is to show under what circumstances pairwise stable “small
worlds” networks are stochastically selected.

1 Introduction

There is an increasing consensus in the economic literature to say that net-
work structures are significantly influencing the outcomes of many social or
economics activities. Recent formal economic contributions highlighting how
-both individual and collective- behaviors and performances are grounded in
networks which are often in turn shaped by agents. Predictions concern vari-
ous contexts such as information diffusion on job opportunities [9, 10], firms’
organizational design [8, 19, 30], R&D collaborations [17, 18], market orga-
nization [37], etc. The very originality of the economic approach to networks
resides in the focus on network formation. A theoretical framework has been
proposed by [22] based on a two-sided network formation game. Their ap-
proach is also usually called “mixed approach” since it is halfway between the
cooperative [31] and the non-cooperative ones [3]. That simply means that two
agents have to agree simultaneously to become directly connected while only
one defection breaks an existing link. The contribution of [22] also constitutes



2 Nicolas CARAYOL and Pascale ROUX

an important point of departure to analyze and model endogenously emerging
structures. Such a line of research has been further developed by Jackson and
Watts [21] (initiated in [35]) who introduce the notion of stochastically stable
networks.

Built upon this line of investigation, this paper aims to study ‘collective
innovation’ in a dynamic model of network formation. But what is meant by
‘collective innovation’? There is an important body of empirical literature
focusing on the importance of network relations in determining firms innova-
tion rates. Far from being the outcome of isolated agents efforts, innovation
is usually described as a collective process [2, 29, 34]. Turning to the theoret-
ical contributions to the issue, several previous works examine how network
structures matter for innovation dynamics through information, knowledge
or technology diffusion [13, 32, 39]. However, they are not concerned with
network formation which remains a crucial issue for knowledge dynamics and
innovation. This question is of interest: If the network structure has obviously
much to say about innovative performance, then one may naturally wonder
about the circumstances that allow various network structures to emerge.

In our network based model of ‘collective innovation’, agents benefit from
knowledge flows from agents with whom they are directly or indirectly con-
nected. The higher the distance in the relational network, the weaker the
spillover. We also introduce an external metric which allows us to consider
the costs of direct links [24] as a function of -geographic- distance between
agents. Altogether, our model can be interpreted as an extension of the well
known connections model introduced by [22]. Since our main concern is with
the dynamic formation of networks, we make use of the stochastic (Markov)
process introduced by [21] based on notions and results initially proposed by
[25, 40]. Nevertheless our model departs from theirs in that we enrich the meet-
ing process: We introduce a preferential meeting rule which influences links
formation, assuming that agents meet easily other agents in their neighbor-
hood. This way we simply reject the uniform meeting probability and weight
the probability that two unconnected agents meet with both the inverse of
their distance (on both metrics: The relational and the geographic ones).

We expect that the underlying Markov chain will select pairwise equilibria
that have some in common with the empirical literature on networks. This
way we come to another body of literature which emerged recently in Physics
dealing with the structure of large networks as evidenced by web sites links,
relational networks, coauthoring scientific paper [4, 5, 28, 36] 3. Watts and
Strogatz [36] define Small Worlds as being highly clustered and having some
long distant connections. Such structures are called as such because the av-

3 As a matter of fact, our preferential meeting rule has some in common with the
so called “preferential attachment” process which has recently been highlighted as
crucial for generating networks characterized with skew vertices distribution. Several
models have been introduced [6, 7, 23, 27, 38]. For a complete review one can refer
to [1]. However these models have a very weak description of agents’ behaviors.
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erage distance between agents is usually small (known as the “six degree of
separation”, Milgram [26]). While the economic literature on network forma-
tion has not dedicated much attention to network characterization, focusing
mainly on the compatibility between networks efficiency and stability [20], the
selected equilibria we obtain here cannot fall anymore systematically under
the usual categories (empty net, complete net, cycle, star). Therefore, we will
compute several indexes that capture interesting features of the graphs. Our
main result is that the collective innovation model tends to select in the long
run pairwise stable networks which share “small worlds” properties.

The paper is organized as follows. Section 2 presents the static features of
our ‘collective innovation’ model in the network formation formalism. Section
3 introduces the dynamic process. Section 4 presents the results. Section 5
concludes.

2 Network formation and the ‘collective innovation’
model

Each agent is assumed to increase its knowledge through internal capacities
and/or by communicating directly through costly relationships with other
agents. Direct connections between agents, which are called pairwise links
since the willingness of both the two agents is necessary to establish and main-
tain a link, form the relational network which is represented as a non-directed
graph. In this model, agents can also benefit from indirect (and costless) con-
nections, through the relational network of their partners, but in a decreasing
manner i.e. the benefits deteriorate with the relational distance. We then con-
sider that the rate at which agents innovate is deduced from their knowledge
accumulation rate which is in turn obtained through their relational network.

We begin with some basic notions in network formation. In this respect,
the point of departure is the network formation formalism introduced by [22].
We then turn to the description of the innovation process.

2.1 Basic notions in network formation
Properties and typical structures of graphs

Counsider a finite set of n agents, N = {1,2,...,n} with n > 3, and let ¢
and j be two members of this set. Agents are represented by the nodes of a
non-directed graph which edges represent the links between them. The graph
then constitutes the relational network between the agents. A link between
two distinct agents ¢ and j € N is denoted ij. A graph ¢ is a list of non
ordered pairs of connected and distinct agents. Formally, {ij} € g means that
ij exists in g. We define the complete graph ¢ := {ij | i,j € N} as the set of
all subsets of IV of size 2, where all players are connected with all the others.
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Let g C gV be an arbitrary collection of links on N. We define G = {g C ¢"'}
as the finite set of all possible graphs between the n agents.

Let ¢ = g+1ij = gU{ij} and ¢’ = g —ij = g\ {ij} be respectively
the graph obtained by adding ¢j and the one obtained by deleting ij to the
existing graph g. The graphs g and ¢’ are said to be adjacent as well as the
graphs ¢g and ¢”. For any g, we define N(g) = {i|3j:4j € g} and #N(g)
the set and the number of agents who have at least a link in the network g.
We also define N;(g) and 7;(g), the set and the number of the links agent
i has, that is: N;(g) = {ij | 3j:ij € g} and n;(9) = #N;(g). The latter is
also called the degree of node i. The total number of links in the graph g is:
1(9) = #9 =5 Xien1i(9)

A path in a non empty graph g € G connecting i to j, is a sequence
of edges between distinct agents such that {i172,12i3, ..., k—19k} C g where
11 = i, ix = j. The length of a path is the number of edges it contains.
Let ¢ «—— j be the set of the path connecting ¢ and j. The set of shortest
paths between i and j noted i<—j is such that if Vk € i——j;k € i «+— j
and #k = minpc,.; #h. We define dy(i,5) = d(i,7) as the number of links
of the shortest path(s) between ¢ and j, also called geodesic distance. When
there is no path between ¢ and j then their geodesic distance is conventionally
infinite: d(i, j) = oo.

An external metric is also introduced, representing for example, the ge-
ographic position of agents [24]. Such external metrics defines a distance
operator denoted d'(7,7). In our model, we consider that agents are lo-
cated on a circle (or a ring). Without loss of generality, agents are assumed
to be ordered according to their index, such that ¢ is the immediate ge-
ographic neighbor of agent 7 + 1 and agent ¢ — 1 but agent 1 and agent
n who are neighbors. The geographic distance may simply be obtained by
&'(i, j) = win {[i — 310 — |i — jI}.

Finally, a graph g C g% is said to be connected if there exists a path
between any two vertices of g. Notice that a cycle on g is a path for which
{#192, .., ig—10x} C ¢ is such that i; = ix. A graph is said to be acyclic if it
contains no cycle.

Hence several typical graphs can be described. Let i,j € N. First of all,
the empty graph, denoted g‘D, is such that it does not contain any links. A
ring is a connected graph composed of exactly one path. Formally, we call a
network g € G a ring (also a chain) if g is connected and if :

-forall i < j:ij € g, there does not exist h such that ¢ < h < j and

-forall i > j:ij € g, there does not exist h such that j < h < i.

Such a graph is denoted ¢°. It is a regular network of order £ = 1, in which
all agents are connected and only connected with their two closest geographic
neighbors. The double ring denoted ¢2° is a regular network of order k = 2
such that all agents are connected and only connected with their four closest
neighbors. Finally, a non empty graph g € G is a (complete) star, denoted g*,
if there exists ¢ € N such that if jk € g*, then either j =i or k = 7. Agent
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1 is called the center of the star. Notice that there are n possible stars, since
every node can be the center.

Network formation, stability and efficiency

Over time, pairs of agents meet and decide to form, maintain or break links.
The formation of a link requires the consent of both the two agents but not its
deletion which can emanate from one of them unilaterally. Moreover, agents
are myopic which means that they take decisions on the basis of their impacts
only on their current payoffs i.e. according to the state of the current network.
Let m; (g¢) be the individual payoffs that agent i receives from the graph g;.
Jackson and Wolinski [22] introduce the notion of pairwise stability which can
be distinguished from the one of Nash equilibrium since the process of network
formation is both cooperative and non cooperative. The formal definition of
this notion is the following.

Definition 1. (based on [22]) A network g C g% is pairwise stable if: (i) for
all ij € g, 7i(g) > 7ilg — ij) and m;(g) > m;(g — ij), and (ii) for allij ¢ g. if
mi(g +1ij) > mi(g) then w;(g +1ij) < m;(g).

The efficiency of a network is computed by the total value of the corre-
sponding graph g, which is a function 7 : {g |g C gN} — R, with (@) = 0.
At a given period t, it is given by:

m(ge) = Y mi(g0) (1)

iEN

Definition 2. (based on [22]) A network g C g~ is efficient if it mazimizes
the wvalue function w(g) on the set of all possible graphs {g|g C g™} i.e.
m(g) > m(g') for all ¢ C g™

2.2 Knowledge flows and innovation

Let us now turn toward describing how knowledge is diffused through the net-
work connections. Let us assume that knowledge is accumulated both through
internal (fixed) capacities of the agent and through the direct and indirect con-
nections that allow him to have access to others’ (new) knowledge. Thus the
total knowledge accumulated at period ¢t may be obtained as follows:

Akf = Ak; (1) =wi+ Y 670w (2)

JEN\

where g¢; is the state of the current network (which is invariant on [¢, ¢ + 1),
w; and w; are respectively the knowledge created by agents i,7 € N during
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one unitary period of time and which are assumed to be exogenous and con-
stant over time and agents. Thus the second component of the expression (2)
is traducing the flow of knowledge absorbed by i, which emanates simultane-
ously from other agents j (assuming no time lag for simplicity), through direct
and indirect interconnections between i and agents j. Parameter ¢ represents
the transferability factor that is the share of new knowledge produced which
is effectively directly or indirectly transmitted through each edge. Thus, we
consider that the communication is not perfect: the positive externality dete-
riorates with the relational distance of the connection. Hence, we assume that
0 € 1]0,1[. For instance, if ¢ and j are indirectly connected through a third
agent, each will get 62 of the flow of knowledge each creates.

We assume that the expected number of innovations generated by ¢ during
any unitary period t is given by:

0! = NAK! (3)

where ) is a non null positive parameter .
Let us now define the (expected) payoff function which is deduced from
the shape of the graph:
m =0V -q (4)

where 6! is the expected number of innovations seen above (3), V' is the net
profit generated by an innovation and ¢! is the costs incurred by 4, computed

as follows:
d=ci(g)=C+ > cd (i) (5)
JEN;(9¢)

It is thus potentially affected by a fixed cost and by the costs spent for
being connected to his direct neighbors®.

The net profit generated by any agent ¢ at period ¢, may be thus understood
as a function of the graph and the position i occupies in it. That value may
thus be written as 7! = m; (¢:) = 7 (Ak; (9¢) , ¢i (9¢)) . Compiling expressions
(2), (4) and (5) one gets:

milg) = AV (wi+ Y 0UDw; | —C— > ed (i) (6)

JEN\i JEN(gt)

“For a more detailed description of the innovation process based on knowledge
accumulation, one can refer to [12].

’Relying on Debreu’s hypothesis [15] according to which closely located players
incur less cost to establish communication, Johnson and Gilles [24] have first ex-
tended the connections model of [22] introducing a spatial cost topology in their
network formation approach. Links costs are increasing with geographic distance
between agents. The traditional assumption is that it’s less costly to establish and
maintain relationships when agents are geographically close.
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Remark 1. Our formulation of the payoff function is voluntarily very close to
the connections model first introduced in [22]. If we arbitrarily fix X = 1]V,
C =0, and let d’ (i,7) = 1,Vi, j, thus we have the same formulation as theirs.
Notice that if we have w; = w; = AV = C = 1, then one gets the simple
connections model which is well known in the network formation literature.
One can also observe that when reintroducing geographic distance in link costs,
then one obtains the same payoffs specification as the one of [24], who first
introduced some external metric (theirs is the line instead as the circle in our
model).

3 Dynamic network formation

This section is dedicated to the presentation of our perturbed stochastic
process of network formation. We begin with the first step of the dynamic
settings, namely the meeting process. We will consider that the probability
for a given pair of unconnected agents to be selected is not fixed but varies
across agents according to their relative position on the current relational
graph. Then, we turn towards the last features of the dynamic process and
present its generic properties.

3.1 The preferential meeting process

In most of the works investigating the evolution of network (for example in
[21, 35]), it is assumed that any pair of agents have the same probability to
meet at each period: It thus constitutes an implicit assumption of an uniform
meeting probability: Vi,j € N, pfj = p’. This assumption is threefold: i) every
pair of unconnected agents have the same probability to meet; i) every pair
of (directly) connected agents have the same probability to reconsider their
relation, and #4) connected agents reconsider their relations with the same
frequency as unconnected agents meet.

Here we reject the ¢) part of the assumption while trying to preserve the i)
and iii) ones for symmetry reasons. Therefore, if we write P! the probability
that the chosen two agents are unconnected at period ¢, we assume that:

N
¢ _ ¢ _ #g" —nlge)
P = Z Pij = TN (7)
ij¢ge
Together with considering that Vij € g:, pj; = p', this implies that the
probability that two connected agents reconsider their relationship at each
period is such that p* = #—1]\,
Moreover, we do not consider that unconnected people may meet with
constant and time independent probabilities. Indeed, this assumption can be
justified in the case of anonymous market interactions when the number of

agents considered is very large. Here, we introduce a preferential meeting
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process, considering that the probabilities for a pair of unconnected agents
to be selected is not independent across agents and vary according to their
relative position on the current relational graph. Hence, we consider that the
less is the relational distance between two unconnected agents, the greater
will be the probability of their selection. Moreover, we consider that this
probability increases with their geographic proximity, which is invariant. This
ensures that the probability of any two unconnected agents is never null (which
is a necessary condition to preserve the ergodicity property of the stochastic
process presented below).

Formally, we introduce a preferential meeting process for unconnected
agents which is captured by the simple following formula:

ply=d(i,5) " +d (0,5)77 Vij ¢ g (8)

where v and [ are two positive parameters capturing the relative importance
of relational indirect connections and geographic proximity in the probability
that two unconnected agents meet each other. This expression is also subject
to normalization such that (7) is respected.

3.2 The limit behavior of the perturbed stochastic process

The dynamic process can be described as follows. At each time period t,
two agents ¢ and j € N are selected by the preferential meeting process
described above. Then, if the selected two agents are directly connected, they
can jointly decide to maintain their relation or unilaterally decide to sever
the link between them. If they are not connected, they can jointly decide to
form a link or renounce unilaterally. Formally, those two situations are the
following:

(i) if ¢j € g, the link is maintained if m;(g:) > mi(g: — ¢j) and m;(ge) >
7;j(g+ — i). Otherwise, the link is deleted.

(i) if ij ¢ g¢, a new link is created if m;(g; +1j) > m;(g¢) and 7;(g: +1j) >
7;(g¢),with a strict inequality for one of them.

The stochastic process introduced here can be defined as a Markov chain
which finite states correspond to the “current” network at the end of a given
period. In other words, the state of the system at time ¢ (with ¢ =0,1,2,...) is
given by the graph structure g; € G. The evolution of the system {g;,t > 0}
can be described as a discrete-time stochastic process with state space G.

Following [21], we then introduce small random perturbations € (¢ € (0, a])
which invert agents’ right decisions in creating, maintaining or deleting links.
These perturbations may be understood as mistakes or as mutations. The
characterization of the asymptotic behavior of this process is due to [40].
For small but non null values of € (¢ € (0,qa]), it can be shown that the
discrete-time Markov chain being irreductible and aperiodic, has a unique
corresponding stationary distribution. Such perturbed stochastic processes are
said to be ergodic. Intuitively ergodicity implies that it is possible to transit
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directly or indirectly between any chosen pair of states in a potentially very
long period of time (which also means that any state of the system can be
directly or indirectly reached from any given one)’. Moreover, when ¢ goes
to zero, the stationary distribution converges to a unique limiting stationary
distribution. The states that are in the support of this limiting stationary
distribution are called stochastically stable and are either pairwise stable (cf.
Definition 1) either part of a close cycle of states”. Notice that the ergodicity
property is quite interesting since it allows us to run numerical simulations
in order to examine the long run behavior of the system [33]: We can then
compute the unique limiting stationary distribution of the process.

4 Networks selection: Results

This section introduces our results on the shapes of the stochastically sta-
ble networks obtained in a simple version of our collective innovation model.
For that purpose, we first present the numerical settings used and the graph
indexes we compute for characterizing various networks architectures.

4.1 Numerical setting and indexes

In this section, we present the results obtained for a simplified version of
the collective innovation model presented in Section 2. Our general profit
given in (6) may be simplified as: w; = w; = AV = C = 1. Moreover, for
simplification purposes, we will consider that ¢ = % for even values of n, and
c = %, otherwise. Recall also that the dynamic process used is based on
the preferential meeting principle introduced in Section 3. For simplification
purposes again, we use a simple rule assuming that v = = 1.

We numerically simulate the unique limiting stationary distribution of the
perturbed dynamic process of [21] (for which the error term is decreasing down

to zero) by the following simple rule:

= (9)

. [0.02 if t<50
1/t otherwise

Thus we ensure that errors affect the dynamics while they are decreasing down
to zero when time increases: lim; o €' = 0.

Let us now introduce several indexes. The average number of neighbors
gives us a measure of the network density: 7(g). Next, we will compute the

Tt allows the long run state of the system to become independent of its initial
conditions. Indeed, processes that are non-ergodic are said to be “path dependent”
[14] since their limiting behavior is dependent on the initial state of the system.

"Such process is called a regular perturbation of the initial stochastic process
(without trembles). Definitions, properties and some proofs are examined in [11].
Initial contributions are the ones of [16, 25, 40], and [21].
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maximal and minimal sizes of neighborhoods: max;e x 7;(¢g) and minjen 7;(g).
We also compute the two indexes introduced by [36]. The first one is simply
computing the average distance of (directly or indirectly) connected agents.
It is given by:

1 .
d(g) = py > > dig) (10)
1€EN jEN\i:i——j#£0
The second is the average cliquishness which indicates to what extent the
neighborhoods of connected people overlap. It is given by:

-y Y o (1)

i€N jl:jlENi(g) mi(9)

with A(l,7) defines such that A(l,j) = 1 if 7 € N;(g) and 0 otherwise.
Lastly, we examine to what extent the geographic distances and the relational
connections overlap. Let us propose an average (geographic) distance of di-
rect connections index which will indicate us to what extent the endogenous
network and the exogenous metrics discorrelate:

pi= 3 oL (12

In the following subsection, we study the limit distribution of states and
show that small world-like networks may be selected through the process of
network formation.

4.2 Features of the limit distribution of networks

The first goal is to study the limit distribution of the process in one simple
numerical situation. For that purpose, we ran 1, 000 simulations of 10, 000 pe-
riods® with the empty graph as initial condition and with n = 20 and § = 0, 7.
Nodes degree distribution peaks at 6 neighbors, being slightly asymmetric. No
agent has less than four neighbors: This is because establishing direct links
with geographically close agents generates low costs. In the meantime, there
is no agent having more than eight neighbors because no one is intending to
support the high costs of many direct links. The network self-organizes itself
in a shape which has some in common with regular networks. One may ob-
serve in the descriptive statistics obtained on such distribution (presented in
Table 1) that the cliquishness coefficient ¢(g) is quite high: Nearly as high as
the one of the double ring ¢g°. More, these clustered networks are correlated
to the geographic metric: The average geographic distance between connected
pairs of agents is quite small (D(g) ~ 2,5). However, the network departs
from such regular structure in that the average path length is singularly lower
than for the single ring (1,84 < d(g°) ~ 5, 26).

8Time series analyses conduced over more than 100,000 periods showed that the
process nearly always converged to a given pairwise stable state after 10,000 periods.
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Table 1. Some descriptive statistics on the graph indexes computed for the limit
graph distribution approximated through 1,000 experiments.

mean median max min var
Av. #neighbors: 7(g) 5.67 570 6.20 5.3 0.03
Min #neighbors: min;en 7:(g) 4.04 4.00 5 4 0.04
Max #neighbors: max;en 7:(g) 7.06 7 8 6 0.17
Av. path length: d (g) 1.84 1.84 194 1.690.00
Av. cliquishness: ¢(g) 0.042 0.042 0.053 0.03 0.00
Av. geo dist. of links: D(g) 247 246  2.77 2.260.01
Activity 116.15 115 171.78 78 218.1

In order to provide a better understanding of these results, we represent
in Figure 1 below two networks structures selected in the long run. The first
structure is obtained with our model whereas the second is obtained with
the simple connections model of [22], that is both without preferential meet-
ing and without link costs increasing with geographic distance. It should be
noticed that both networks are pairwise stable for their respective payoffs
function. The left graph clearly exhibits small world features: High cluster-
ization while some distant connections remain. We also computed the limit
stochastic distribution for the simple connections model by using a similar
experimental protocol as the one used for the simple distributed innovations
model. We find that networks are less dense (7j(g) = 4.4), have similar mean
values for the average path length (1.84) while the cliquishness coefficient is
not significantly different from zero.

Fig. 1. Two limit typical stable networks selected by the stochastic process in the
simple collective innovation model (left graph) and in the simple connections model
of [22] (with 20 agents, after 10,000 periods, obtained for § = 0.7)
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4.3 How does the limit distribution vary with the decay
parameter?

We now turn to examine more systematically how the limit distribution varies
with the decay parameter §. To do so we perform a set of (10) experiments
for each small increment of ¢ over its value space (]0,1[). In Figure 2 below,
we represent the average path length and cliquishness of the limit networks
as functions of delta. We also represent the values of the two indexes for
the corresponding random graphs. By corresponding random graphs, we mean
random graphs that have the same number of vertices than the networks
obtained with our model for any given value of §. The indexes values of such
random graphs were numerically computed with a thousand experiments on
each given number of edges.

] 3
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Fig. 2. Average path length (circles) and average cliquishness (diamonds) of the
limit networks when § € ]0, 1] varies (20 agents, 10,000 periods). We also computed
the values of these indexes for random networks having a fixed number of links
(1,000 experiments for each one). For each limit network (selected for a given value
of §), we represent the associated values of these indexes (crosses and triangles) for
the corresponding random graph. The curves account for fitted values of the indexes
based on a quadratic specification.

We observe that the average path length of the selected networks decreases
from 6 = 0.1 to 0.4, then remains nearly constant and increases for high values
of § (> 0.75). Average cliquishness suddenly increases from zero at 6 = 0.2
and reaches his maximum again very rapidly for 6 = 0.35. For this value of
0, we nearly have the weakest average path length while average cliquishness
is already at its maximum. Moreover, the average path length of the selected
networks is nearly as small as the one obtained for the corresponding random
graph, whereas the average cliquishness is significantly larger. Such a situation,



‘Collective innovation’ in a model of network formation 13

where both high cliquishness and low path length are obtained, presents strong
similarities with the small world network structure as defined formally by [22].
Finally, c¢(g) decreases slowly and stabilizes until § = 0.75, from where it goes
down to 0 when § becomes close to 1.

We also studied the precise shape of the networks selected. We found that
the empty graph ¢? is selected when § < ¢ = 0.1. When ¢ < § < 2¢ the
geographic ring ¢g° emerges: in this case, all agents are connected to their two
closest neighbors. When ¢ is 0.3, agents are nearly always connected to their
four closest geographic neighbors. This situation corresponds to the double
geographic ring ¢2°. From 0.4 < § < 0.7, we found a very ‘stable’ situation
(plateau) characterized by flat maximum neighborhood sizes which decrease
from there. For a large range of parameter ¢ values (0.35 < ¢ < 0.9), we thus
obtain networks which exhibit small world features. The most characteristic
networks are obtained when § ~ 0.35.

5 Conclusion

In this paper, we examined a dynamic stochastic process of network formation.
In our network based model of ‘collective innovation’, agents benefit from
knowledge flows by communicating with agents with whom they are directly
or indirectly connected. We also introduced heterogenous cost of linking and
a preferential meeting rule governing the dynamic process of links formation,
which consisted in weighting the meeting probability between any two agents
by the inverse of their relational and geographic distances. We studied the
characteristics of the long term selected graphs computing standard statistical
indexes (average path length, clustering coefficient, etc.). Their architectures
were compared to the ones obtained in the simple connections model. Our
main result is to show that this model generates stochastically stable networks
which share features with “small worlds” unlike the initial simple connections
model.
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